Quantcast
Channel: ASTRON/JIVE Daily Image
Viewing all articles
Browse latest Browse all 2210

Simultaneous radio/X-ray detection of the first Be/BH binary MWC 656

$
0
0

© Marc Ribo (UB) & Benito Marcote (JIVE)

MWC 656 is the first known binary system composed of a Be star and a black hole (BH). Be/BH binaries are important in the context of binary system evolution and sources of detectable gravitational waves because they are possible precursors of coalescing neutron star/BH binaries.

MWC 656 was discovered as a transient gamma-ray source and X-ray emission was later revealed, indicating its nature as a new high-mass X-ray binary. Although radio observations at different epochs and with different interferometers have been conducted during the last years, most of them have only provided upper-limits on its putative radio emission. MWC 656 was only detected in a single epoch with the VLA up to now, suggesting a variable behavior also at radio frequencies. Optical observations provided an estimation of the orbital period of 60.37 days and the mass of the black hole of 3.8-6.9 solar masses.

We conducted simultaneous X-ray and radio observations with Chandra and the VLA, reporting a faint X-ray and radio emission. These data allowed us to detect one of the faintest quiescent luminosities observed in stellar-mass black holes so far. Additionally, we find that the obtained luminosities are fully compatible with those expected from the X-ray/radio correlation derived from quiescent BH/low-mass X-ray binaries. Given that only one Galactic BH/high-mass X-ray binary was known to date, Cygnus X-1 (always located in the high end of the correlation), the addition of MWC 656 (located in the low end) allow us to study this X-ray/radio correlation for the first time in high-mass X-ray binaries. These results show that the accretion/ejection coupling in stellar-mass black holes is independent of the nature of the donor star.

The figure above shows a representation of MWC 656 (right), the radio map together with the optical position (top left), and the X-ray/radio correlation including low-mass and high-mass X-ray binaries and the position of MWC 656 on the diagram.

These results have just been published in Ribó et al. (2017, ApJL, 835, 33).


Viewing all articles
Browse latest Browse all 2210

Trending Articles