© ASTRON/ESO/Authors
From follow-up optical observations, that latter millisecond pulsar, J0348+0432, turned out to a very massive, 2.01 solar mass neutron star in a highly relativistic orbit (artist impressions, right-most panel; Paper III). The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime; a results that warranted publication in Science recently. Many physically motivated extensions to general relativity (GR) predict significant deviations in the properties of spacetime surrounding massive neutron stars. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling. The press release for this paper includes a dynamic video impression of this extreme system.