© ASTRON
ARTS, the Apertif Radio Transient System, is a hybrid FPGA-GPU machine, which will serve as a cutting-edge transient survey instrument, and as a pulsar-timing and VLBI backend for all WSRT users. The grant covers the extension of the firmware on the Apertif correlator Uniboards to produce up to 450 (!) simultaneous tied-array beams. These can fill out the entire Apertif field of view for transient searching. Through this same tied-array capability, Apertif can join VLBI observing; ARTS will even stream the individual Westerbork dishes to the expanded EVN correlator at JIVE, for VLBI over a field that is 10,000 times larger than currently possible with Westerbork. The beam-forming is also essential for Apertif-era pulsar timing studies. After this FPGA beamforming, signals for all these applications are further processed on a 500 TFLOP GPU cluster. This versatile back end covers the VLBI formatting, the coherent dedispersion for timing, or the full field fast-transient search.
Thanks to the work by the engineers, administrators and astronomers involved, at both ASTROn and JIVE, ARTS ended top-ranked a in very competitive NWO-M round. In a few years, ARTS that will offer a combination that is unique in the world, of wide-field detection and high-precision characterization of both neutron stars and black holes, for unprecedented studies of the nature of matter, space and time.